26 research outputs found

    The role of hidden curriculum in teaching pharmacy students about patient safety

    Get PDF
    Objective. To examine how hidden and informal curricula shaped pharmacy students' learning about patient safety. Methods. A preliminary study exploring planned patient safety content in pharmacy curricula at 3 UK schools of pharmacy was conducted. In-depth case studies were then carried out at 2 schools of pharmacy to examine patient safety education as delivered. Results. Informal learning from teaching practitioners was assigned high levels of credibility by the students, indicating the importance of role models in practice. Students felt that the hidden lessons received in the form of voluntary work experience compensated for limited practice exposure and elements of patient safety not adequately addressed in the formal curriculum, such as learning about safe systems, errors, and professionalism. Conclusions. Patient safety is a multifaceted concept and the findings from this study highlight the importance of pharmacy students learning in a variety of settings to gain an appreciation of these different facets

    Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a CysticFibrosis Patient Treated with b-Lactams

    Get PDF
    Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A “gain of function” of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.Fil: Colque, Claudia A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Albarracín Orio, Andrea G. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Hedemann, Laura G. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Feliziani, Sofía. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Moyano, Alejandro J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Smania, Andrea M. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; Argentina.Fil: Colque, Claudia A. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Albarracín Orio, Andrea G. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Hedemann, Laura G. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Feliziani, Sofía. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Moyano, Alejandro J. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Smania, Andrea M. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET); Argentina.Fil: Tomatis, Pablo E. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Dotta, Gina. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Vila, Alejandro J. Universidad Nacional de Rosario. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Tomatis, Pablo E. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Moreno, Diego M. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Vila, Alejandro J. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina.Fil: Albarracín Orio, Andrea G. Universidad Católica de Córdoba. Facultad de Ciencias Agropecuarias. (IRNASUS-CONICET); Argentina.Fil: Moreno, Diego M. Universidad Nacional de Rosario. Instituto de Química de Rosario (IQUIR-CONICET); Argentina.Fil: Hickman Rachel A. Department of Clinical Microbiology; Denmark.Fil: Sommer, Lea M. Department of Clinical Microbiology; Denmark.Fil: Johansen, Helle K. Department of Clinical Microbiology; Denmark.Fil: Hickman Rachel A. Technical University of Denmark, Lyngb. Novo Nordisk Foundation Centre for Biosustainability; Denmark.Fil: Sommer, Lea M. Technical University of Denmark, Lyngb. Novo Nordisk Foundation Centre for Biosustainability; Denmark.Fil: Johansen, Helle K. Technical University of Denmark, Lyngb. Novo Nordisk Foundation Centre for Biosustainability; Denmark.Fil: Bonomo, Robert A. Case Western Reserve University. Departments of Molecular Biology and Microbiology, Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics; United States.Fil: Bonomo, Robert A. Senior Clinical Scientist Investigator. Louis Stokes Cleveland Department of Veterans Affairs; United States.Fil: Johansen, Helle K. University of Copenhagen. Department of Clinical Medicine; Denmark

    Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis.

    Get PDF
    Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections

    Archaeoseismology: Methodological issues and procedure

    Get PDF
    Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a 'territorial' approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysical-engineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard
    corecore